

## A Correlation of

## Experience Chemistry ©2021



To the

#### Introduction

This document demonstrates how **Experience Chemistry** ©**2021** supports Massachusetts' 2016 Science and Technology/Engineering Standards for Chemistry. Correlation references include the Experience Notebook (Vol. 1 and 2), Teacher Guide, and online digital assets.

Savvas Learning Company is excited to introduce **Experience Chemistry!** From climate change, water quality, and the newest energy sources, to the foods we grow and eat, your students will experience chemistry like never before. The program uses cool, weird, and amazing phenomena to engage students in 3-D science. Give students an up-close, first-hand experience they'll never forget.

### Be the first to Experience It!

Storylines are organized around a real-world Anchoring Phenomena that sparks student curiosity, gives a purpose to learning and connects chemistry concepts through a unifying unique occurrence. Students encounter everyday phenomena through Claims-Evidence Reasoning Exercises, Authentic Readings, STEM Projects, and Engineering Performance Tasks.

### **Explore Phenomena with Flinn Scientific!**

**Experience Chemistry** and Flinn Scientific partner to deliver high-quality inquiry opportunities to chemistry classrooms. Lab Experiments, Engineering Challenges, Performance Tasks, Virtual Reality Simulations, and Lab Videos by Flinn Scientific immerse students in hands-on chemistry.

#### Hands-On Labs

• Assign student-friendly labs focused on real-world phenomena in every learning experience.

• Customize your lessons with four versions of every lab including Open-Ended, Guided, Shortened, and Advanced.

## Lab Videos

• Background videos, demo videos and summary videos engage and connect students to the phenomena, prepare students and instructors for set-up and revisit concepts before assessments.

## **Design Challenges and Performance Tasks**

• Students mimic the real-world activities of engineers as they define and solve problems and design, test and evaluate solutions.

• Students demonstrate mastery of three-dimensional learning at the end of every Investigation with a Performance-Based assessment.

## Lab Kits

• Simplify lab set-up and solution preparation with time-saving lab kits.

## Virtual Reality

• Immerse your students in 360° simulations that bring chemistry to life.

## Table of Contents

| (HS-PS1) Matter and Its Interactions                   | 4  |
|--------------------------------------------------------|----|
| (HS-PS2) Motion and Stability: Forces and Interactions | 10 |
| (HS-PS3) Energy                                        | 12 |

| Massachusetts 2016 Science and<br>Technology/Engineering Standards for Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Experience Chemistry<br>©2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (HS-PS1) Matter and Its Interactions<br>(HS-PS1-1) Use the periodic table as a model to<br>predict the relative properties of main group elements,<br>including ionization energy and relative sizes of atoms<br>and ions, based on the patterns of electrons in the<br>outermost energy level of each element. Use the<br>patterns of valence electron configurations, core<br>charge, and Coulomb's law to explain and predict<br>general trends in ionization energies, relative sizes of<br>atoms and ions, and reactivity of pure elements. | Experience Notebook, Vol 1:<br>Investigation 1<br>Types of Atoms, 13-14<br>Patterns in Electron Configurations, 36-38<br>Valence Electrons, 39<br>Revisit Investigative Phenomenon, 40<br>Investigation 2<br>The Periodic Table as a Predictive Model, 50-51<br>Coulomb's Law, 52<br>The Shielding Effect and Effective Nuclear Charge,<br>53-55<br>Atomic Radius, 56-58<br>Ionization Energy, 59<br>Successive Ionization Energies, 60<br>Connecting the Trends, 63<br>Revisit Investigative Phenomenon, 64<br>Teacher Guide:<br>Inquiry Labs: Develop a Periodic Table; Elemental<br>Metals, Nonmetals, and Metalloids; Periodic Trends<br>and Properties<br>Performance Based Assessment: Evaluate Atomic<br>Structure with Flame Tests; Gravimetric Analysis of<br>Periodic Trends<br>Digital Activities: Graphing Periodic Properties;<br>Periodic Trends; Make a Claim About Periodic<br>Trends; Size Trends and Shielding Effect; Predict<br>Reactivity Using Periodic Trends |
| (HS-PS1-2) Use the periodic table model to predict<br>and design simple reactions that result in two main<br>classes of binary compounds, ionic and molecular.<br>Develop an explanation based on given observational<br>data and the electronegativity model about the relative<br>strengths of ionic or covalent bonds.                                                                                                                                                                                                                        | Experience Notebook, Volume 1:<br>Investigation 3<br>Ions and the Octet Rule, 68-69<br>Ionic Bonds, 70-71<br>Ionic Compounds, 72-73<br>Revisit Investigative Phenomenon, 76, 90<br>The Octet Rule in Molecules, 82-83<br>Types of Covalent Bonds, 84<br>Electronegativity and Bonding, 86-87<br>Investigation 6<br>Activity Series, 232<br>Predicting the Products of Reactions, 238-239<br>Revisit Investigative Phenomenon, 240<br>Ions in Aqueous Solution, 241-242<br>Predicting the Formation of a Precipitate, 246                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Massachusetts 2016 Science and<br>Technology/Engineering Standards for Chemistry                                                                                                                                                                                                                                                                                                                                                      | Experience Chemistry<br>©2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HS-PS1-2 Continued:                                                                                                                                                                                                                                                                                                                                                                                                                   | Continued:<br>Experience Notebook, Volume 2:<br>Investigation 15<br>Redox vs. Non-redox Reactions, 284<br>Teacher Guide:<br>Inquiry Labs: Characteristics of Ionic Bonds;<br>Characteristics of Covalent Bonds; Evaluate Chemical<br>Reactions; Types of Chemical Reactions; Predict<br>Chemical Reactions; Metal Activity<br>Engineering Design Challenge: Water Purification<br>Digital Activities: Calculate Bond Polarity; Predicting<br>Bond Type; Reactivity of Metals; Cation Meets Anion;<br>Predict Whether a Precipitate Will Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (HS-PS1-3) Cite evidence to relate physical properties<br>of substances at the bulk scale to spatial<br>arrangements, movement, and strength of<br>electrostatic forces among ions, small molecules, or<br>regions of large molecules in the substances. Make<br>arguments to account for how compositional and<br>structural differences in molecules result in different<br>types of intermolecular or intramolecular interactions. | Experience Notebook, Vol 1:<br>Investigation 3<br>Ionic Bonds, 70-71<br>Ionic Compounds, 72-73<br>Properties of Ionic Compounds, 74-76<br>Properties of Metals, 78-80<br>Revisit Investigative Phenomenon, 80<br>The Octet Rule in Molecules, 82-83<br>Electronegativity and Bonding, 86-87<br>Geometry and Polar Molecules, 88-90<br>Revisit Investigative Phenomenon, 90<br>Van der Waals Forces, 91-92<br>Hydrogen Bonds, 93<br>Properties of Molecular Substances, 94-95<br>Revisit Investigative Phenomenon, 96<br>Investigation 4<br>Liquids and Intermolecular Forces, 118-119<br>Solids and Attractive Force, 120-121<br>Properties of Ionic and Molecular Compounds, 138<br>Covalent Network Solids, 139-140<br>Revisit Investigative Phenomenon, 140, 147<br>Ductility and Malleability, 142<br>Crystalline Structure and Properties of Metals, 144<br>Water and Hydrogen Bonding, 148<br>Structure Affects Properties of Ice, 152-153<br><b>Teacher Guide:</b><br>Inquiry Labs: Characteristics of Ionic Bonds;<br>Characteristics of Covalent Bonds; Intermolecular<br>Forces; Correlate Material Properties and Bond Type;<br>Melt Ionic and Covalent Compounds<br>Performance Based Assessment: Types of<br>Chemical Bonds |

| Massachusetts 2016 Science and<br>Technology/Engineering Standards for Chemistry                                                                                                                                                                        | Experience Chemistry<br>©2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HS-PS1-3 Continued:                                                                                                                                                                                                                                     | Continued:<br><b>Digital Activities:</b> lons and Electroplating; Formation<br>of lonic Compounds; Describe lonic Bonding and<br>Properties; Electron Dot Structures for Molecular<br>Substances; Intermolecular Forces in Liquids; Water's<br>Behavior on Earth; Relate Intermolecular Forces to<br>States of Matter; Phase Changes and Intermolecular<br>Forces; Tough Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (HS-PS1-4) Develop a model to illustrate the energy<br>transferred during an exothermic or endothermic<br>chemical reaction based on the bond energy<br>difference between bonds broken (absorption of<br>energy) and bonds formed (release of energy). | Experience Notebook, Volume 1:<br>Investigation 6<br>Energy of Reactions, 223-224<br>What Causes Reactions?, 225<br>Revisit Investigative Phenomenon, 226<br>Combination Reactions, 228<br>Decomposition Reactions, 229<br>Investigation 8<br>Bond Enthalpy, 285-286<br>Activation Energy, 287<br>Representations of Enthalpy, 288<br>Revisit Investigative Phenomenon, 290, 298<br>Hess's Law, 291<br>Heat Summation, 292<br>Standard Enthalpy of Formation, 293<br>Standard Enthalpy of Reaction, 294<br>Enthalpy of Solution, 296-297<br>Teacher Guide:<br>Inquiry Labs: The Thermodynamics of Hand<br>Warmers; Hess's Law and the Combustion of a Metal<br>Engineering Design Challenge: Flameless Heating<br>Systems<br>Digital Activities: Energy Changes in Reactions;<br>Energy in Reactions; Bond Energy and Enthalpy |
|                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Massachusetts 2016 Science and Technology/Engineering Standards for Chemistry                                                                                                                                                                                                                                                                                                  | Experience Chemistry<br>©2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (HS-PS1-5) Construct an explanation based on kinetic<br>molecular theory for why varying conditions influence<br>the rate of a chemical reaction or a dissolving<br>process. Design and test ways to slow down or<br>accelerate rates of processes (chemical reactions or<br>dissolving) by altering various conditions.                                                       | Experience Notebook, Volume 2:<br>Investigation 12<br>Collision Theory – a Review, 163<br>Effect of Concentration on Reaction Rates, 164<br>Effect of Temperature on Reaction Rates, 165<br>Effect of Particle Size on Reaction Rates, 166<br>Revisit Investigative Phenomenon, 167<br>One-Step and Multistep Reactions, 170<br>Lowering Activation Energy, 171-172<br>Assessment, 191<br>Teacher Guide:<br>Inquiry Labs: Reaction Rates: Iodine Clock<br>Performance Based Assessment: Reaction Rates<br>and Equilibrium<br>Digital Activities: Factors that Affect Reaction Rate;<br>Reaction Rate and Molecular Collisions; Glow Sticks<br>and Reaction Rate; Reaction Rates and Activation<br>Energy |
| (HS-PS1-6) Design ways to control the extent of a reaction at equilibrium (relative amount of products to reactants) by altering various conditions using Le Chatelier's principle. Make arguments based on kinetic molecular theory to account for how altering conditions would affect the forward and reverse rates of the reaction until a new equilibrium is established. | Experience Notebook, Volume 2:<br>Investigation 12<br>Le Chatelier's Principle, 176<br>How Concentration Affects Equilibrium, 177<br>How Pressure Affects Equilibrium, 178<br>How Temperature Affects Equilibrium, 179<br>Revisit Investigative Phenomenon, 180<br>Investigation 14<br>Le Chatelier's Principle and Future Ocean pH, 236-<br>237                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                | Teacher Guide:<br>Inquiry Labs: Explore Chemical Equilibrium<br>Engineering Design Challenge: Use Equilibrium for<br>a Commercial Application<br>Performance Based Assessment: Reaction Rates<br>and Equilibrium<br>Digital Activities: Equilibrium Shifting                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Massachusetts 2016 Science and<br>Technology/Engineering Standards for Chemistry                                                                                                                                                                                                                                                                                              | Experience Chemistry<br>©2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (HS-PS1-7) Use mathematical representations and<br>provide experimental evidence to support the claim<br>that atoms, and therefore mass, are conserved during<br>a chemical reaction. Use the mole concept and<br>proportional relationships to evaluate the quantities<br>(masses or moles) of specific reactants needed in<br>order to obtain a specific amount of product. | Experience Notebook, Volume 1:<br>Investigation 7<br>Interpreting Chemical Equations, 254<br>Sample Problem: Interpreting a Balanced Chemical<br>Equation, 255<br>What Is Conserved?, 256<br>Proportionality of Reactants and Products, 257<br>Revisit Investigative Phenomenon, 258<br>Sample Problem: Using the Limiting Reagent to Find<br>the Quantity of a Product, 273<br><b>Teacher Guide:</b><br>Inquiry Labs: Identify Unknowns Through<br>Stoichiometry; Determination of Reaction Output;<br>Formation of Barium Iodate<br>Engineering Design Challenge: Build a Film<br>Canister Rocket<br>Performance Based Assessment: The<br>Stoichiometry of Filling a Balloon<br>Digital Activities: Understanding Stoichiometry;<br>Limiting Reagent |
| (HS-PS1-9(MA)) Relate the strength of an aqueous<br>acidic or basic solution to the extent of an acid or base<br>reacting with water as measured by the hydronium ion<br>concentration (pH) of the solution. Make arguments<br>about the relative strengths of two acids or bases with<br>similar structure and composition.                                                  | Experience Notebook, Volume 2:<br>Investigation 13<br>Calculating pH, 199-200<br>Sample Problem: Calculating pH from H <sub>3</sub> O <sup>+</sup><br>Concentration, 201<br>Strong Acids and Bases, 203<br>Weak Acids, 204-205<br>Weak Bases, 206-207<br>Calculating pH for Weak Acids and Bases, 208<br>Strength vs. Concentration, 210-211<br>Investigation 14<br>Carbon Dioxide and Ocean pH, 230-231<br>Teacher Guide:<br>Inquiry Labs: Measure Acid Strength<br>Digital Activities: Exploring Acid Strength and<br>Concentration; Compare Equilibrium Positions of<br>Weak Acids                                                                                                                                                                  |

| Massachusetts 2016 Science and<br>Technology/Engineering Standards for Chemistry                                                                                                                                                                                                                                                                                                                              | Experience Chemistry<br>©2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (HS-PS1-10(MA)) Use an oxidation-reduction reaction<br>model to predict products of reactions given the<br>reactants, and to communicate the reaction models<br>using a representation that shows electron transfer<br>(redox). Use oxidation numbers to account for how<br>electrons are redistributed in redox processes used in<br>devices that generate electricity or systems that<br>prevent corrosion. | Experience Notebook, Vol 2:<br>Investigation 15<br>Gaining and Losing Electrons, 276-277<br>Sample Problem: Identifying Oxidized and Reduced<br>Reactants, 278<br>Oxidation Numbers in Reactions, 282<br>Sample Problem: Assigning Oxidation Numbers in<br>Reactions, 283<br>Redox vs. Non-redox Reactions, 284<br>Sample Problem: Identifying Redox Reactions, 285<br>Revisit Investigative Phenomenon, 287<br>Balancing by the Oxidation-Number-Change Method,<br>292<br>Sample Problem: Balancing Redox Equations by<br>Change in Oxidation Number, 293<br>Balancing by the Half-Reaction Method, 294-295<br>Revisit Investigative Phenomenon, 296<br>Voltaic Cells, 298-299<br>Sample Problem: Writing the Cell Reaction, 302<br>Revisit Investigative Phenomenon, 308<br><b>Teacher Guide:</b><br>Inquiry Labs: Explore Iron Corrosion<br>Digital Activities: Redox and Non-Redox Reactions;<br>Oxidation and Reduction at the Atomic Scale; Track<br>Electrons in Redox Reactions; Energy Transformation<br>in a Battery |
| (HS-PS1-11(MA)) Design strategies to identify and<br>separate the components of a mixture based on<br>relevant chemical and physical properties.                                                                                                                                                                                                                                                              | For supporting content, please see:<br>Experience Notebook, Volume 1:<br>Investigation 4<br>Colloids and Suspensions, 168-169<br>Teacher Guide:<br>Inquiry Lab: Aqueous Solutions<br>Digital Activities: Dissolution Rate; Solubility and<br>Temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Massachusetts 2016 Science and<br>Technology/Engineering Standards for Chemistry                                                                                                                                                                 | Experience Chemistry<br>©2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (HS-PS2) Motion and Stability: Forces and Interaction                                                                                                                                                                                            | ons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (HS-PS2-6) Communicate scientific and technical<br>information about the molecular-level structures of<br>polymers, ionic compounds, acids and bases, and<br>metals to justify why these are useful in the<br>functioning of designed materials. | Experience Notebook, Volume 1:<br>Investigation 4<br>Properties of Ionic and Molecular Compounds, 138<br>Revisit Investigative Phenomenon, 140, 147<br>Ductility and Malleability, 142<br>Experience Notebook, Volume 2:<br>Investigation 16<br>Ethers and Amines, 330<br>Organic Chemical Reactions, 335-336<br>Polymers, 337-339<br>Teacher Guide:<br>Inquiry Labs: Investigate Different Hydrocarbons;<br>Protein and Amino Acid Tests<br>Engineering Design Challenge: Building a Better<br>Bike; Polymers: Bouncy Balls<br>Digital Activities: Tough Tools; Protein Structure and                                                                                                                                                                  |
| (HS-PS2-7(MA)) Construct a model to explain how<br>ions dissolve in polar solvents (particularly water).<br>Analyze and compare solubility and conductivity data<br>to determine the extent to which different ionic species<br>dissolve.        | Experience Notebook, Volume 1:         Investigation 3         Properties of lonic Compounds, 74-75         Investigation 4         Aqueous Solutions, 154-155         Electrolytes and Nonelectrolytes, 156-157         Solubility, 162         Solubility and Temperature, 163-164         Investigation 6         Predicting the Formation of a Precipitate, 246         Experience Notebook, Volume 2:         Investigation 13         Strong Acids and Bases, 203         Weak Acids, 204-205         Weak Bases, 206-207         Teacher Guide:         Inquiry Labs: Aqueous Solutions         Digital Activities: lons and Electroplating; Model         Concentration's Effect on Conductivity; Conductivity of         Strong and Weak Acids |

| Massachusetts 2016 Science and<br>Technology/Engineering Standards for Chemistry                                                                                                                                                                                                                        | Experience Chemistry<br>©2021                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (HS-PS2-8(MA)) Use kinetic molecular theory to<br>compare the strengths of electrostatic forces and the<br>prevalence of interactions that occur between<br>molecules in solids, liquids, and gases. Use the<br>combined gas law to determine changes in pressure,<br>volume, and temperature in gases. | Experience Notebook, Volume 1:<br>Investigation 4<br>Kinetic Theory and a Model for Gases, 112<br>Common Gases, 113<br>Kinetic Energy and Particle Motion in Solids, Liquids<br>and Gases, 117<br>Liquids and Intermolecular Forces, 118-119<br>Solids and Attractive Force, 120-121<br>Phase Changes, 125-126                                       |
|                                                                                                                                                                                                                                                                                                         | Experience Notebook, Volume 2:<br>Investigation 9<br>Compressibility, 6<br>Gas Pressure and Amount of Gas, 7<br>Gas Pressure and Volume, 8<br>Gas Pressure and Temperature, 9<br>Combined Gas Law, 19<br>Sample Problem: Using the Combined Gas Law, 20<br>Real Gases, 27-28                                                                         |
|                                                                                                                                                                                                                                                                                                         | Teacher Guide:<br>Inquiry Labs: Compressibility; Relationships Between<br>Gas Variables<br>Digital Activities: Relate Intermolecular Forces to<br>States of Matter; Phase Changes and Intermolecular<br>Forces; Explain Changes in Tire Pressure; Gas<br>Volume and Temperature; Relate Gas Pressure and<br>Temperature; Model the Combined Gas Laws |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                      |

| (HS-PS3) Energy         (HS-PS3:4b) Provide evidence from informational text<br>or available data to illustrate that the transfer of<br>energy during a chemical reaction in a closed system<br>involves changes in energy dispersal (enthalpy<br>change) and heat content (entropy change) while<br>assuming the overall energy in the system is<br>conserved.       Experience Notebook, Volume 1:<br>investigation 6<br>Energy of Reactions, 223-224<br>Revisit Investigative Phenomenon, 226         Investigation 1<br>Systems and Surroundings, 283<br>Enthalpy, 284<br>Bond Entralpy, 285-286<br>Activation Energy, 287<br>Revisit Investigative Phenomenon, 290<br>Heat Summation, 292<br>Standard Enthalpy of Reaction, 294<br>Enthalpy of Solution, 296-297<br>Revisit Investigative Phenomenon, 298         Experience Notebook, Volume 2:<br>Investigation 12<br>Entropy, 183-184<br>Enthalpy, Entropy, and Free Energy, 187-188         Teacher Guide:<br>Inquiry Labs: The Thermodynamics of Hand<br>Warmers; Supersaturation and Thermodynamics<br>Engineering Design Challenge: Flameless Heating<br>Systems         Performance Based Assessment: Enthalpy of a<br>Neutrilization Reaction<br>Digital Activities: Energy in Reactions; Bond Energy<br>and Enthalpy; Energy Input for the Rusting of Iron | Massachusetts 2016 Science and<br>Technology/Engineering Standards for Chemistry                                                                                                                                                                                                                                                        | Experience Chemistry<br>©2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(HS-PS3-4b) Provide evidence from informational text<br/>or available data to lillustrate that the transfer of<br/>energy diring a chemical reaction in a closed system<br/>involves changes in energy dispersal (enthalpy<br/>change) and heat content (entropy change) while<br/>assuming the overall energy in the system is<br/>conserved.</li> <li>Experience Notebook, Volume 1:<br/>Investigation 6<br/>Systems and Surroundings, 283<br/>Enthalpy, 284<br/>Bond Enthalpy, 285-286<br/>Activation Energy, 287<br/>Revisit Investigative Phenomenon, 290<br/>Heat Summation, 292<br/>Standard Enthalpy of Reaction, 294<br/>Enthalpy, 183-184<br/>Enthalpy, Entropy, and Free Energy, 187-188</li> </ul>                                                                                                                                                                 | (HS-PS3) Energy                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (HS-PS3-4b) Provide evidence from informational text<br>or available data to illustrate that the transfer of<br>energy during a chemical reaction in a closed system<br>involves changes in energy dispersal (enthalpy<br>change) and heat content (entropy change) while<br>assuming the overall energy in the system is<br>conserved. | Experience Notebook, Volume 1:<br>Investigation 6<br>Energy of Reactions, 223-224<br>Revisit Investigative Phenomenon, 226<br>Investigation 8<br>Systems and Surroundings, 283<br>Enthalpy, 284<br>Bond Enthalpy, 285-286<br>Activation Energy, 287<br>Revisit Investigative Phenomenon, 290<br>Heat Summation, 292<br>Standard Enthalpy of Reaction, 294<br>Enthalpy of Solution, 296-297<br>Revisit Investigative Phenomenon, 298<br>Experience Notebook, Volume 2:<br>Investigation 12<br>Entropy, 183-184<br>Enthalpy, Entropy, and Free Energy, 187-188<br>Teacher Guide:<br>Inquiry Labs: The Thermodynamics of Hand<br>Warmers; Supersaturation and Thermodynamics<br>Engineering Design Challenge: Flameless Heating<br>Systems<br>Performance Based Assessment: Enthalpy of a<br>Neutralization Reaction<br>Digital Activities: Energy in Reactions; Bond Energy<br>and Enthalpy; Energy Input for the Rusting of Iron |

©2020 Savvas Learning Company, LLC